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Abstract

It will be defined a globalization for a partial H-bimodule algebra, extending the notion
given by Alves and Batista in [3]. It will be shown that every partial H-bimodule
algebra has a globalization, it will be constructed the standard one and showed that it
is minimal.

Bimodule algebra
An algebra B is a left H-module algebra if there exist a linear map . : H ⊗ B → B ,
denoted by .(h ⊗ a) = h . a, such that:
(i) 1H . b = b;
(ii) h . (ab) = (h1 . a)(h2 . b);
(iii) h . (g . b) = hg . b;
In a similar way we can define a right H-module algebra.
We will say that B is a H-bimodule algebra, if B is a left and right H-module algebra
such that the actions are compatible, i.e.,

h . (b / k) = (h . b) / k

Examples
Example 1: Any algebra B is an H-bimodule algebra with the trivial structure given
by εH, i.e.,

h . a = ε(h)a and a / h = ε(h)a

Example2: A Hopf algebra H is a H∗-bimodule algebra with the classical structure,
i.e.

f ⇀ h = h1f (h2) and h ↼ f = f (h1)h2

Partial bimodule algebra
An algebra A is a left partial H-module algebra if there exists a linear map
→: H ⊗ A→ A, denoted by → (h ⊗ a) = h→ a, such that:
(i) 1H → a = a;
(ii) h→ [a(g → b)] = (h1 → a)(h2g → b);
In a similar way we can define a right partial H-module algebra.
We will say that A is a partial H-bimodule algebra, if A is a left and right partial
H-module algebra such that the corresponding partial actions are compatible, i.e.,

h→ (b ← k) = (h→ b)← k

Examples
Example 1: Let H4 = 〈x , g | x2 = 0, g 2 = 1, gx = −xg〉 be the Sweedler algebra
and A any K-algebra. So A is a partial H4-bimodule algebra by the following actions:

1→ a = a a← 1 = a
g → a = 0 a← g = 0
x → a = la a← x = ra
xg → a = −la a← xg = −ra

,

∀a ∈ A and any r , l ∈ K.
Note that, it is not a global action.
Example 2: Let G be a finite group and G1,G2 subgroups of G such that car(K)
does not divide their respective orders |G1| and G2. Let KG ∗ be the dual algebra of
KG with basis {pg | g ∈ G} and A a K-algebra.
So A is an KG ∗-bimodule algebra with actions defined by:

pg → a =

{
1
|G1|a, if g ∈ G1

0, otherwise
and a← pg =

{
1
|G2|a, if g ∈ G2

0, otherwise.

Note that each above action is global if and only if the corresponding subgroup is
equal to 1.

Induced Partial Action
Let B be an H-bimodule algebra with actions denoted by / and ., A a unital
subalgebra of B such that ∀a, b ∈ A

(a / h)(k . b) = (a / h)1A(k . b)

in A.
So we define the following linear maps

→: H ⊗ A → A
h ⊗ a 7→ h→ a = 1A(h . a)

←: A⊗ H → A
a ⊗ h 7→ a← h = (a / h)1A

With these maps A becomes a partial H-bimodule algebra.

Remark: Let B be a left H-module algebra. With the right trivial structure given
by ε, B is a H-bimodule algebra. In this context, the induced partial action as
bimodule is the same as the induced as left partial action. The induced action for left
H-module algebra was defined by Alves and Batista in [3].

Globalization
Let A a partial H-bimodule algebra, with partial actions ← and →. A pair (B , θ),
where B is an H-bimodule algebra and θ : A→ B is a multiplicative monomorphism,
is said a globalization for the partial H-bimodule algebra if:
(i) (θ(a) / h)(k . θ(b)) = θ[(a← h)(k → b)];
(ii) B is the H-bimodule generated by θ(A), i.e., B = H . θ(A) / H .

Remark
(1) In the above definition, θ(A) is a partial H-bimodule algebra by the partial action
induced from B . Note that, these induced partial actions are equivalent to the
corresponding partial actions of A, i.e.,

θ(h→ a) = h→ θ(a) and θ(a← h) = θ(a)← h.

(2) If (B , θ) is a globalization for A, so the multiplication of B is given by

(h . θ(a) / k)(h′ . θ(a′) / k ′) = h1 . θ[(a← kS(k ′1))(S(h2)h′→ a′)] / k ′2.

(3) If (B , θ) is a globalization for a partial H-bimodule algebra A, so (H . θ(A), θ) is
a globalization for A as partial left H-module algebra and (θ(A) / H , θ) is a
globalization for A as partial right H-module algebra.

Standard Globalization
Let A be a partial H-bimodule algebra and consider Hom(H ⊗ H ,A), which is an
algebra with the convolution product.
Define

. : H ⊗ Hom(H ⊗ H ,A) → Hom(H ⊗ H ,A)
h ⊗ f 7→ (x ⊗ y 7→ f (xh ⊗ y))

/ : Hom(H ⊗ H ,A)⊗ H → Hom(H ⊗ H ,A)
f ⊗ h 7→ (x ⊗ y 7→ f (x ⊗ hy))

Proposition:

Let A be a partial H-bimodule algebra, so Hom(H ⊗ H ,A) with the above structure
is an H-bimodule algebra.

Now consider the multiplicative monomorphism

ϕ : A → Hom(H ⊗ H ,A)
a 7→ (h ⊗ k 7→ h→ a← k)

Note that the condition

(ϕ(a) / h) ∗ (k . ϕ(b)) = ϕ((a← h)(k → b))

in the definition of globalization is trivially satisfied.
With this construction, we have the following theorem.

Theorem:
Every partial H-bimodule algebra has a globalization.

The globalization above constructed is called the standard globalization.

Theorem
Let (B ′, θ) a globalization for the H-bimodule algebra A. Then there exists an
algebra epimorphism Φ from (B ′, θ) onto (B , ϕ),
The above morphism is defined by

Φ : B ′ → B
h . θ(a) / k 7→ h . ϕ(a) / k.

Minimal Globalization
A globalization (B , θ) is called minimal if for all H-subbimodule M of B satisfying
θ(1A)Mθ(1A) = 0 we have M = 0.

Note that, the standard globalization is minimal.
Moreover, when a globalization is minimal we have that Φ is an algebra isomorphism.
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